Alfabetizzazione dei dati degli insegnanti universitari per il processo decisionale pedagogico
DOI:
https://doi.org/10.61007/QdC.2023.3.149Parole chiave:
Learning analytics, alfabetizzazione ai dati degli insegnanti, analisi sistemica della letteraturaAbstract
L'articolo ha cercato di discutere in modo specifico le competenze di data literacy dei docenti universitari, importanti per un uso efficace della learning analytics nel processo di insegnamento-apprendimento. Pertanto, sulla base di questa analisi, gli insegnanti devono raggiungere un certo livello di data literacy per svolgere determinate azioni pedagogiche. La domanda principale della presente ricerca è quali siano le competenze di data literacy necessarie agli insegnanti per utilizzare gli strumenti di learning analytics e prendere decisioni pedagogiche basate sui dati. L'articolo si basa sul metodo dell'analisi sistemica della letteratura. I documenti di ricerca selezionati e analizzati ci permettono di presentare i big data nell'istruzione, di evidenziare il valore pedagogico delle tecnologie di learning analytics e di fornire una panoramica degli strumenti di learning analytics. I risultati dello studio teorico hanno dimostrato che per utilizzare gli strumenti di analisi dell'apprendimento è importante che gli insegnanti abbiano competenze come l'alfabetizzazione digitale, la raccolta dei dati, l'analisi e l'interpretazione dei dati, ecc.
Riferimenti bibliografici
Atkinson, L. Z., & Cipriani, A. (2018). How to carry out a literature search for a systematic review: a practical guide. BJPsych Advances, 24(2), 74-82.
Baker, R. S., & Hawn, A. (2021). Algorithmic bias in education. International Journal of Artificial Intelligence in Education, 1-41.
Bennett, R. E. (2015). The changing nature of educational assessment. Review of Research in Education, 39(1), 370-407.
Capogna, S. Sociology between big data and research frontiers, a challenge for educational policies and skills. Qual Quant 57, 193– 212 (2023). https://doi.org/10.1007/s11135-022-01351-7.
Corrin, L., Kennedy, G., & Mulder, R. (2013). Enhancing learning analytics by understanding the needs of teachers. In ASCILITE-Australian society for computers in learning in tertiary education annual conference Australasian Society for Computers in Learning in Tertiary Education, 201-205.
Digital Education Action Plan, 2021 – 2027 (2020). Available: https://education.ec.europa.eu/focus-topics/digital-education/action-plan.
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the national academy of sciences, 111(23), 8410-8415.
Gummer, E. S., & Mandinach, E. B. (2015). Building a conceptual framework for data literacy. Teachers College Record, 117(4), 1-22.
Haddaway, N. R., Collins, A. M., Coughlin, D., & Kirk, S. (2015). The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PloS one, 10(9), e0138237.
Henderson, J., & Corry, M. (2021). Data literacy training and use for educational professionals. Journal of Research in Innovative Teaching & Learning, 14(2), 232-244.
Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., & Hlosta, M. (2019). A large-scale implementation of predictive learning analytics in higher education: The teachers’ role and perspective. Educational Technology Research and Development, 67, 1273-1306.
Ifenthaler, D., Gibson, D., Prasse, D., Shimada, A., & Yamada, M. (2021). Putting learning back into learning analytics: Actions for policymakers, researchers, and practitioners. Educational Technology Research and Development, 69, 2131-2150.
Khine, M., Dhabi, A., & Emirates, U. A. (2018). Learning Analytics for Student Success: Future of Education in Digital Era. In The European Conference on Education.
Köse, U., & Özdemir, S. (2023). Teachers’ data literacy for learning analytics: a central predictor for digital data use in upper secondary schools. Education and Information Technologies, 28(3), 1685-1703. doi: 10.1007/s10639-022-10722-6.
Kovanovic, V., Mazziotti, C., & Lodge, J. (2021). Learning analytics for primary and secondary schools. Journal of Learning Analytics, 8(2), 1-5.
Mangaroska, K., Vesin, B., & Giannakos, M. (2019, March). Cross- platform analytics: A step towards personalization and adaptation in education. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge (pp. 71-75).
Mayer-Schönberger, V., & Cukier, K. (2014). Lernen mit Big Data: Die Zukunft der Bildung. Redline Wirtschaft.
McNaughton, S., Lai, M. K., & Hsiao, S. (2012). Testing the effectiveness of an intervention model based on data use: A replication series across clusters of schools. School Effectiveness and School Improvement, 23(2), 203-228.
Michos, K., & Petko, D. (2022). Examining pedagogical data literacy: Results of a survey among school teachers at upper secondary level in Switzerland.
Poortman, C. L., & Schildkamp, K. (2016). Solving student achievement problems with a data use intervention for teachers. Teaching and teacher education, 60, 425-433.
Reeves, T. D., & Honig, S. L. (2015). A classroom data literacy intervention for pre-service teachers. Teaching and Teacher Education, 50, 90-101.
Rienties, B., Herodotou, C., Olney, T., Schencks, M., & Boroowa, A. (2018). Making sense of learning analytics dashboards: A technology acceptance perspective of 95 teachers. International Review of Research in Open and Distributed Learning, 19(5).
Sergis, S., Sampson, D. G., & Pelliccione, L. (2020). Teaching analytics, value and tools for teacher data literacy: a systematic and tripartite approach. International Journal of Educational Technology in Higher Education, 17(1), 1-23. doi: 10.1186/s41239-020-00201-6.
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE review, 46(5), 30.
Torres, R. (2021). Does test-based school accountability have an impact on student achievement and equity in education?: A panel approach using PISA.
Van Geel, M., Keuning, T., Visscher, A. J., & Fox, J. P. (2016). Assessing the effects of a school-wide data-based decision-making intervention on student achievement growth in primary schools. American Educational Research Journal, 53(2), 360-394.
van Leeuwen, A., Knoop-van Campen, C. A., Molenaar, I., & Rummel, N. (2021). How teacher characteristics relate to how teachers use dashboards: Results from two case studies in K-12. Journal of Learning Analytics, 8(2), 6-21.
van Leeuwen, A., Knoop-van Campen, C. A., Molenaar, I., & Rummel, N. (2021). How teacher characteristics relate to how teachers use dashboards: Results from two case studies in K-12. Journal of Learning Analytics, 8(2), 6-21.
West, D., Heath, D., & Huijser, H. (2016). Let’s Talk Learning Analytics: A Framework for Implementation in Relation to Student Retention. Online Learning, 20(2), 30-50.
Zhu, C., & Urhahne, D. (2018). The use of learner response systems in the classroom enhances teachers’ judgment accuracy. Learning and Instruction, 58, 255-262.
Downloads
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2023 Quaderni di comunità

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.