Valutazione della QoS delle università mediante mappe cognitive fuzzy

Autori

  • Perivolaris Panagiotis Dottorando, Dipartimento di Ingegneria Elettrica e Informatica - Università di Patrasso.
  • Stylianakis Vassilis Professore associato, Dipartimento di Ingegneria Elettrica e Informatica - Università di Patrasso.

DOI:

https://doi.org/10.61007/QdC.2023.3.158

Parole chiave:

Ottimizzazione, Logica Fuzzy, Mappe Cognitive Fuzzy, Processo Decisionale

Abstract

La trasformazione digitale degli IIS sta rivelando una serie di nuove opportunità per migliorare non solo le loro attuali pratiche di insegnamento online, ma anche le loro operazioni aziendali globali. L’elaborazione dei dati può essere ulteriormente ampliata utilizzando una serie di tecniche avanzate, come nel caso delle mappe cognitive ad albero, delle reti fuzzy o anche degli algoritmi evolutivi, per esaminare e spiegare come il comportamento di un sistema complesso, come un IIS, sia influenzato dalle molteplici condizioni che cambiano nel tempo. Il design di tale strumento e lo sviluppo di un sistema di ottimizzazione in grado di determinare i valori ideali per questi aspetti sono oggetto della presente proposta. Il seguente lavoro introduce uno strumento per la valutazione del fattore HEI Quality of Service (HEI-QoS), utilizzando una Fuzzy Cognitive Map progettata per lo scopo specifico. Il modello FCM utilizza otto concetti che caratterizzano il funzionamento e le prestazioni dell’HEI, prendendo in considerazione i più noti strumenti di rankling dell’HEI. I valori dei concetti possono essere stimati da un’analisi di ricerca sul campo all’interno dell’IIS, risultando in uno strumento di valutazione interna molto utile per un IIS.

Riferimenti bibliografici

Adina-Petruta Pavel, (2015), “Global university rankings - a comparative analysis”, Elsevier, Procedia Economics and Finance, vol.26, p.p. 54 – 63, DOI: 10.1016/S2212-5671(15)00838-2.

Aguilar J. (2005), “A survey about Fuzzy Cognitive maps papers”, International Journal of Computational Cognition Volume 2, June 2005.

Apostolopoulos, I.D., Groumpos, P.P. and Apostolopoulos, D.J. (2021), “Advanced fuzzy cognitive maps: state-space and rule- based methodology for coronary artery disease detection” Inter. Journal of Biomedical Physics & Engineering Express, Volume 7, Issue 4, pp.o45007, IOP Publishing.

Axelrod R. (1976) “Structure of Decision: The Cognitive Maps of Political Elites.” Princeton University Press DOI 10.2307/2616237.

Baporikar, N. (2021), “Stakeholder approach for quality higher education,” in Research Anthology on Preparing School Administrators to Lead Quality Education Programs. Pennsylvania: IGI Global., 2021, 1664–1690. DOI 10.4018/978-1-7998-3438-0.ch075.

Barbrook-Johnson, P., Penn, A.S. (2002), “Fuzzy Cognitive Mapping. In: Systems Mapping”. Palgrave Macmillan, Cham. DOI 10.1007/978-3-031-01919-7_6.

Biggs, N., Lloyd, E. and Wilson, R. (1986), “Graph Theory,” Oxford University Press, pp. 1736-1936.

Dias Sofia B. et. al. (2015) “Fuzzy cognitive mapping of LMS users’ Quality of Interaction within higher education blended-learning environment”, Expert Systems with Applications, Vol.42, ELSEVIER, 2015, Pages 7399-7423, DOI 10.1016/j.eswa.2015.05.048.

ECOLHE project, (2023), “The European Higher Education Area Facing The Digital Challenge”, Erasmus+ KA2-Strategic Partnerships in the field of Education (2020-1-IT02-KA203- 079176).DOI: 10.26220/eco.4512.

Estrada-Real, A.C., Cantu-Ortiz, F.J. (2022), “A data analytics approach for university competitiveness: the QS world university rankings.”, Int J Interact Des Manuf 16, p.p. 871–891 (2022). DOI: 10.1007/s12008-022-00966-2.

European Commission. “Digital Education Action Plan (2021- 2027)”.

Felix, G., Nápoles, G., Falcon, R., Froelich, W., Vanhoof, K., & Bello, R. (2019). “A review on methods and software for Fuzzy Cognitive Maps”. Artificial Intelligence Review, 52(3), 1707–1737. DOI 10.1007/s10462-017-9575-1.

Gauchy, A. L., “Recherche sur les polyèdres - premier mémoire,” Journal de l’Ecole Polytechnique 9, vol. 16, pp. 66-86, 1813.

Glykas M. (2010), “Fuzzy Cognitive Maps”, Studies in Fuzziness and Soft Computing, Volume 247, Springer-Verlag Berlin Heidelberg.

Groumpos, P. P., and Anninou, A.P. (2012), “A theoretical mathematical modeling of Parkinson’s disease using Fuzzy Cognitive Maps,” Proc. of 12th International Conference on Bioinformatics and Bioengineering (BIBE), pp 677 – 682.

Harvey, L., and Askling, B. (2003), “Quality in higher education,” in The Dialogue Between Higher Education Research and Practice, ed. R. Begg (Berlin: Springer), 69–83. DOI 10.1080/13538320308164.

Helfgott, A., Lord, S., Bean, N., Wildenberg, M., Gray, S., Gray, S., Vervoort, J., Kok, K., & Ingram, J. (2015). “Clarifying fuzziness: Fuzzy Cognitive Maps, neural networks and system dynamics models in participatory social and environmental decision-aiding processes”. Processes EUFP7 TRANSMANGO Working Paper 1.

Jacek Pietrucha, (2018), “Country-specific determinants of world university rankings”, Springer Scientometrics, 2018, pp. 1129- 1139, DOI: 10.1007/s11192-017-2634-1.

Jetter A. J., Kok K., (2014), “Fuzzy Cognitive Maps for futures studies—A methodological assessment of concepts and methods”, Futures, Vol 61, ELSEVIER, DOI 10.1016/j.futures.2014.05.002.

Kosko B. (1986), “Fuzzy cognitive maps”, International Journal of Man-Machine Studies, 24, 65–75.

Kosko B. (1993). “Adaptive inference in fuzzy knowledge networks”, Readings in Fuzzy Sets for Intelligent Systems, 1993, Pages 888- 891. DOI 10.1016/B978-1-4832-1450-4.50093-6.

L’Huillier, (1861), S. A. J., “Memoire sur le Polyedrometrie,” Annales de Mathematiques 3, pp. 169-189.

Moed, H.F. (2017), “A critical comparative analysis of five world university rankings.”, Scientometrics 110, p.p. 967–990. DOI:10.1007/s11192-016-2212-y.

Mpelogianni, V. G. & Groumpos, P. P. (2018), “Re-approaching fuzzy cognitive maps to increase the knowledge of a system”, Intern. Journal AI & SOCIETY, pp.1-14.

Mustapha S. M. et al. (2010), “Factors influencing classroom participation: a case study of Malaysian undergraduate students”, Procedia - Social and Behavioral Sciences Vol. 9, 2010, Pages 1079-1084, ELSEVIER. DOI 10.1016/j.sbspro.2010.12.289.

Nápoles G., Leon Espinosa M., Grau I., and Vanhoof K. (2018), “FCM expert: Software tool for scenario analysis and pattern classification based on fuzzy cognitive maps.” International Journal on Artificial Intelligence Tools 27.07: 1860010. DOI 10.1142/S0218213018600102.

Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P. (2003), “Fuzzy cognitive map learning based on nonlinear Hebbian rule”, Lecture Notes in Computer Science, vol. 2903, pages.256–268, DOI 10.1007/978-3-540-24581-0_22.

Papageorgiou E.I. (2014), “Fuzzy Cognitive Maps for Applied Sciences and Engineering from Fundamentals to Extensions and Learning Algorithms”, Springer, ISBN 978-3-642-39739-4 (eBook), DOI 10.1007/978-3-642-39739-4.

Purnomo M., Anugerah A., Dewipramesti B. (2020), “Sustainable Supply Chain Management Framework in a Higher Education Laboratory Using Intuitionistic Fuzzy Cognitive Map”, Journal of Industrial Engineering and Management. DOI 10.3926/jiem.3204.

Raghuram, S., Hill, N. S., Gibbs, J. L., and Maruping, L. M. (2019), “Virtual work: bridging research clusters”. Acad. Manag. Ann. 13, 308–341. DOI 10.5465/annals.2017.0020.

Rieckmann, M. (2012), “Future-oriented higher education: which key competencies should be fostered through university teaching and learning?”. Futures 44, 127–135. DOI: 10.1016/j.futures.

Seymour, D. T. (1992), “On Q: Causing Quality in Higher Education”. New York, NY: Macmillan Publishing Company. 100 Front St., Riverside, NJ 08075- 7500.

Stach Wojciech, Kurgan Lukasz, Pedrycz Witold, Reformat Marek, (2005), “Genetic learning of fuzzy cognitive maps”, Fuzzy Sets and Systems, Volume 153, Issue 3, 1 August 2005, Pages 371-401.

Stach W., Kurgan L. and Pedrycz W., (2007), “Parallel Learning of Large Fuzzy Cognitive Maps,” 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 2007, pp. 1584-1589. DOI: 10.1109/IJCNN.2007.4371194.

Stach Wojciech, Kurgan Lukasz, and Pedryc Witold, (2007), “A Survey of Fuzzy Cognitive Map Learning Methods”.

Vergini, E.S. and Groumpos, P.P., (2018), “Modeling nearly Zero Energy Building using new equations and separating concepts on Fuzzy Cognitive Maps”- Elsevier, IFAC-PapersOnLine, Volume 51, Issue 30, pp. 709-714, 2018.

Downloads

Pubblicato

2024-02-28

Come citare

Panagiotis, P., & Vassilis, S. (2024). Valutazione della QoS delle università mediante mappe cognitive fuzzy. Quaderni Di comunità. Persone, Educazione E Welfare Nella Società 5.0, (3), 155–194. https://doi.org/10.61007/QdC.2023.3.158