Intelligenza artificiale e literacy. Promuovere l’approccio sociologico umano-centrico per superare i pregiudizi e favorire l’inclusione sociale
DOI:
https://doi.org/10.61007/QdC.2025.1.272Parole chiave:
IA, pregiudizi, approccio umano-centrico, alfabetizzazione digitale, inclusione socialeAbstract
Il saggio, partendo da un’analisi sociologica sul ruolo dell’intel- ligenza artificiale nella società contemporanea, focalizza la propria attenzione sull’alfabetizzazione digitale e sulla funzione della digital literacy quale capacità di utilizzare le tecnologie digitali in modo efficace e critico, in un’attenzione che promuova un uso consapevole delle tecnologie e che rimetta al centro l’uomo come agente dotato di coscienza, valutazione e interpretazione.
Riferimenti bibliografici
Arrow, K. (1973). The theory of discrimination. Discrimination, Labor Markets, 3(10), 3-33.
Baker, R. S. & Hawn, M. A. (2022). Algorithmic Bias in Education. International Journal of Artificial Intelligence and Education, 32, 1052-92.
Barocas, S. & Selbst, A. D. (2016). Big Data’s Disparate Impact, California Law Review, 104(3), 671-732.
Bauman, Z. (2000). Liquid Modernity. Cambridge: Polity Press.
Becchimanzi, C. (2022). Sfide di progettazione per l’accettabilità nell’interazione uomo-robot: framework e strumenti per migliorare l’esperienza dell’utente e l’interazione con le tecnologie emergenti, Rivista Italiana di Ergonomia, 267-72.
Bechmann, A. & Bowker, G. C. (2019). Unsupervised by any other name: Hidden layers of knowledge production in artificial intelligence on social media. Big Data & Society, 6(1), 1-11.
Beer, D. (2017). The social power of algorithms, Information, Communication & Society, 20(1), 1-13.
Berger, P. T. & Luckmann, T. (1966). The Social Construction of Reality. New York: Anchor Books.
Binns, R. (2018), Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR 81, 149-59.
Bloomfield, B. P. (1987). The culture of artificial intelligence. In B. P. Bloomfield (Eds.), The question of artificial intelligence. Philosophical and sociological perspectives. New York: Croom Helm. 59-105.
Bourdieu, P. (1975). The specificity of the scientific field and the social conditions of the progress of reason, Social Science Information, 14(6), 19-47.
Bourdieu, P. (1998). Il dominio maschile. Milano: Feltrinelli.
Bourdieu, P. & Wacquant, L. (1992). Réponses. Pour une anthropologie reflexive. Paris: Seuil.
Broussard M. (2018). Artificial unintelligence: How computers misunderstand the world. Cambridge, MA: The MIT Press.
Buolamwini, J. & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification, Proceedings of the Conference on Fairness, Accountability, and Transparency, 77-91.
Castells, M. (1996). The Rise of the Network Society. Hoboken: Wiley-Blackwell.
Cath, C., Wachter, S., Mittelstadt, B., Taddeo, M. & Floridi, L. (2018). Artificial Intelligence and the “Good Society”: The US, EU, and UK Approach. Science and Engineering Ethics, 24(2), 505-28.
Centorrino, M. & Romeo, A. (2023), Media digitali. La costruzione delle relazioni sociali. Milano: FrancoAngeli.
Commission of the European Communities. (2003). Joint Report on Social Inclusion summarizing the results of the examination of the National Action Plans for Social Inclusion (2003-2005). Brussels. COM 773.
Commissione Europea (2018). Digital Competence Framework for Citizens. Brussels.
Commissione Europea (2020). On artificial intelligence - a European approach to excellence and trust. White Paper. Brussels.
Cruz, T. M. (2020). Perils of data-driven equity: safety-net care and big data’s elusive grasp on health inequality. Big Data & Society, 7(1). https://doi.org/10.1177/2053951720928097.
Cuomo, S., Biagini, G. & Ranieri, M. (2022). Artificial Intelligence Literacy, che cos’è e come promuoverla. Dall’analisi della letteratura ad una proposta di Framework, Media Education, 13(2), 161-72. doi: 10.36253/me-13374.
D’Ambrosio M. & Boriati D. (2023). Digital Literacy, Technology Education and Lifelong Learning for Elderly: Towards Policies for a Digital Social Innovation Welfare. Italian Journal of Sociology of Education, 15(2), 21-36.
De Luca, C., Domenici, G. & Spadafora, G. (2023). Per una inclusione sostenibile. La prospettiva di un nuovo paradigma educativo. Roma; Editoriale Anicia.
Edelmann, A., Wolff, T., Montagne, D. & Bail, C. A. (2020). Computational social science and sociology. Annual Review of Sociology, 46, 61-81. https://doi.org/10.1146/annurev-soc-121919-054621.
Eshet-Alkalai, Y. (2004). Digital Literacy: A Conceptual Framework for Survival Skills in the Digital Era. Journal of Educational Multimedia and Hypermedia, 13(1), 93-106.
Eubanks, V. (2018). Automating inequality: how high-tech tools profile, police, and punish the poor. New York: St. Martin’s Press.
Facione, P. A. (2011). Critical Thinking: What It Is and Why It Counts, Insight Assessment, 2013, 1-28. https://www.law.uh.edu/blakely/advocacy-survey/Critical%20Thinking%20Skills.pdf.
Ferioli, E. (2019). L’intelligenza artificiale nei servizi sociali e sanitari: una nuova sfida al ruolo delle istituzioni pubbliche nel welfare italiano? BioLaw Journal - Rivista di BioDiritto, 1, 163-75.
Fleck, J. (1987). Development and establishment of artificial intelligence, In B.P. Bloomfield (Eds.), The question of artificial intelligence: Philosophical and sociological perspectives. New York: Croom Helm, 106–64.
Floridi, L. (2015). The Onlife Manifesto: Being Human in a Hyperconnected Era. Cham; Heidelberg; New York; Dordrecht; London: Springer Cham. https://link.springer.com/content/pdf/10.1007/978-3-319-04093-6.pdf.
Floridi, L. (2018). The Ethics of Artificial Intelligence. Berlin: Springer International Publishing.
Floridi, L. (2019). The Logic of Information: A Theory of Philosophy as Conceptual Design. Oxford: Oxford University Press.
Forsythe, D. E. (1993a). The construction of work in artificial intelligence. Science, Technology, & Human Values, 18(4), 460-79.
Forsythe, D. E. (1993b). Engineering knowledge: The construction of knowledge in artificial intelligence. Social Studies of Science, 23(3), 445-77.
Franzoni, V. (2023). Gender Differences and Bias in Artificial Intelligence. In Vallverdú, J. (2023). Gender in AI and Robotics. The Gender Challenges from an Interdisciplinary Perspective, Intelligent Systems Reference Library Volume 235. Spinger Cham. 27-44.
Friedman, B. & Nissenbaum, H. (1996). Bias in computer systems. ACM Transactions on Information Systems, 14(3), 330-47.
Giddens, A. (2009). Sociology. Cambridge: Polity Press. Gilster, P. (1997). Digital Literacy. Wiley Computer Publishing.
Golder, S. A. & Macy, M. W. (2014). Digital footprints: Opportunities and challenges for online social research. Annual Review of Sociology, 40, 129-52.
Hargittai, E. (2002). Second-Level Digital Divide: Differences in People’s Online Skills. First Monday, 7(4).
Helsper, E. J. (2012). A Corresponding Fields Model for the Links Between Social and Digital Exclusion. Communication Theory, 22(4), 403-26.
Hildebrandt, M. (2015), Dualism is Dead. Long Live Plurality (Instead of Duality). In Floridi, L. (Eds.). The Onlife Manifesto, Berlin: Springer, Cham.
Hofeditz, L., Mirbabaie, M., Luther, A., Mauth, R. & Rentemeister, I. (2022). Ethics guidelines for using AI-based algorithms in recruiting: Learnings from a systematic literature review. Proceedings of the 55th Hawaii International Conference on System Sciences, 2022, 145-54.
Hughes, T. P. (1987), The Evolution of Large Technological Systems. In Bijker W., Hughes T. P., Pinch T., The Social Construction of Technological Systems. Cambridge, MA: MIT Press. 45-76.
Istituto Nazionale di Statistica (2023). Cittadini e Competenze Digitali. Roma.
Kahneman, D., Slovic, S. P., Slovic, P. & Tversky, A. (1982). Judgment under uncertainty: heuristics and biases. Cambridge: Cambridge University Press.
Köchling, A. & Wehner, M. C. (2020). Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Business Research, 13(3), 795-848.
Leavy, S. (2018). Gender Bias in Artificial Intelligence: The Need for Diversity and Gender Theory in Machine Learning. 2018 ACM/IEEE 1st International Workshop on Gender Equality in Software Engineering, 14-6.
Lee, N. T. (2018). Detecting racial bias in algorithms and machine learning. Journal of Information, Communication and Ethics in Society, 16(3), 252-60.
Leitgöb, H., Prandner, D. & Wolbring, T. (2023). Editorial: Big data and machine learning in sociology. Frontiers of Sociology, 8.
Liu, Z. (2021). Sociological perspectives on artificial intelligence: A typological reading. Sociology Compass,15, 1-13.
Lloyd, K. (2018). Bias Amplification in Artificial Intelligence Systems, arXiv preprint arXiv,1809.07842. https://doi.org/10.48550/arXiv.1809.07842.
Long, D. & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors and Computing Systems, 1-16.
Luckin, R., Holmes, W., Griffiths, M. & Forcier, L. B. (2016). Intelligence Unleashed: An Argument for AI in Education, Pearson.
McLuhan, M. (1967). Gli strumenti del comunicare. Milano: Il Saggiatore.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S. & Floridi, L. (2016). The ethics of algorithms: mapping the debate. Big Data & Society, 3(2), 1-21.
Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York: University Press.
Norman, D. A. & Draper, S. W. (1986). User-Centered System Design: New Perspectives on Human-Computer Interaction. Mahwah: Lawrence Erlbaum Associates.
Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-53.
Paolucci, G. (2002). L’impegno della ragione sociologica contro le maschere del dominio. Quaderni di Sociologia, 29, 151-61.
Parikh R. B., Teeple S. & Navathe A. S. (2019). Addressing Bias in Artificial Intelligence in Health Care, JAMA, 322(24), 2377-78.
Passi, S. & Barocas, S. (2019). Problem formulation and fairness, Proceedings of the ACM conference on fairness, accountability, and transparency, New York. 39-48.
Prensky, M. (2001). Digital Natives Digital Immigrants, On the Horizon. MCB University Press, 9(5).
Prensky, M. (2009). H. Sapiens Digital: From Digital Immigrants and Digital Natives to Digital Wisdom. Innovate: Journal of Online Education, 5(3). https://www.learntechlib.org/p/104264/.
Prensky, M. (2010). H. Sapiens Digitale: dagli Immigrati digitali e nativi digitali alla saggezza digitale. TD-Tecnologie Didattiche, 50, 17-24.
Rahwan, I. (2018). Society-in-the-loop programming the algorithmic social contract. Ethics Inf Technol, 20(1), 5-14.
Rogers, E. (2003). Diffusion of Innovation. New York: Free Press.
Schwartz, R. D. (1989). Artificial intelligence as a sociological phenomenon. Canadian Journal of Sociology, 14(2), 179-220.
Selwyn, N. (2004). Reconsidering Political and Popular Understandings of the Digital Divide. New Media & Society, 6(3), 341-62.
Sen, A. (1999). Development as Freedom. Oxford: Oxford University Press.
Silver, H. (1994). Social Exclusion and Social Solidarity: Three Paradigms. International Labour Review, 133(5-6), 531-78.
Silverstone, R. & Hirsch, E. (1992). Consuming Technologies. Media and Information in Domestic Spaces. London: Routledge.
Tufekci, Z. (2014). Big questions for social media big data: representativeness, validity and other methodological pitfalls, Proceedings of the Eight International AAAI Conference on Weblogs and Social Media, 505-14.
van Dijk, J. A. (2020). The Digital Divide. Cambridge: Polity Press.
van Dijck, J. A., Poell, T. & de Waal, M. (2019). Platform society. Valori pubblici e società connessa. Milano: Guerini Scientifica.
Varsha, P. S. (2023), How can we manage biases in artificial intelligence systems – A systematic literature review, International Journal of Information Management Data Insights, 3(1).
Walsh, T., Bell, G., Brundage, M., Griffin, P. & Yampolskiy, R. V. (2020). Artificial Intelligence: Opportunities and Risks. AI & Society, 35(4), 625-40.
Winner, L. (2020). The Whale and the Reactor: A Search for Limits in an Age of High Technology. Chicago: The University of Chicago Press.
Yeh, S. C., Wu, A. W., Yu, H. C., Wu, H. C., Kuo, Y. P. & Chen, P.
X. (2021). Public perception of artificial intelligence and its connections to the sustainable development goals. Sustainability, 13(16), 9165.
Zheng, L. (2021). Sociological perspectives on artificial intelligence: A typological reading. Sociology Compass, 15(3), 1-13.
Zuboff, S. (2019). The Age of Surveillance Capitalism. The Fight for a Human Future at the New Frontier of Power. New York: Public Affairs.
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
Copyright (c) 2025 Quaderni di comunità. Persone, Educazione e Welfare nella società 5.0

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale.