Un modello per una governance responsabile dell'IA antropocentrica nel settore pubblico

Autori

DOI:

https://doi.org/10.61007/QdC.2025.1.288

Parole chiave:

governance, responsabilità, affidabilità, modello, pubblica amministrazione, antropocentrismo

Abstract

La governance responsabile dell’Intelligenza Artificiale nel settore pubblico non è più un’opzione rimandabile a causa dei numerosi problemi etici emersi negli ultimi anni caratterizzati da una massiccia adozione di servizi basati sull’IA. Date le numerose sfide poste, diviene obbligatorio includere prospettive sociali incentrate sull’uomo. Questo studio discute un modello di framework per definire i ruoli, le responsabilità e le competenze di tutti gli stakeholder coinvolti nei processi di sviluppo, distribuzione e valutazione dell’IA nel settore pubblico.

Biografia autore

Francesco Niglia, Link Campus University

PhD in Complex Systems Engineering. Francesco ha lavorato per circa 20 anni come consulente per il Trasferimento Tecnologico; la sua esperienza si estende alla Social Innovation, Responsible Innovation, modellazione di ecosistemi e strategie di innovazione, sviluppo di modelli per sistemi complessi, ICT per soluzioni governative.

Riferimenti bibliografici

AI-HLEG (2019). High-Level Expert Group on Artificial Intelligence: Ethics guidelines for trustworthy AI.

Andrus, M., & Villeneuve, S. (2022, June). Demographic-reliant algorithmic fairness: Characterising the risks of demographic data collection in the pursuit of fairness. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency, 1709-1721.

Council of Europe (2019). Responsibility and AI: Council of Europe Study DGI(2019)05.

European Commission (2021). Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act).

European Commission (2024a). Public Sector Tech Watch: Mapping innovation in the EU public services: a collective effort in exploring the applications of artificial intelligence and blockchain in the public sector.

European Commission (2024b). Public Sector Tech Watch: Adoption of AI, Blockchain and other emerging technologies within the European public sector. Publications Office of the European Union, Luxemburg, 2024.

Gasser, U., Almeida, V. A. (2017). A layered model for AI governance. IEEE Internet Computing, 21(6), 58-62.

Grimmelikhuijsen, S. Tangi, L. (2024). What factors influence perceived artificial intelligence adoption by public managers. European Commission: Joint Research Centre. Luxembourg: Publications Office of the European Union. https://data.europa.eu/doi/10.2760/0179285, JRC138684.

Hak, A. (2022). Why AI governance is important for building more trustworthy, explainable AI. https://thenextweb.com/news/ai-governance-critical-trustworthy-explainable-ai (accessed on 18/10/ 2024).

Kumar, S. (2023). Developing Human Skills in the Era of Artificial Intelligence: Challenges and Opportunities for Education and Training. Scholedge International Journal of Multidisciplinary & Allied Studies, 10(2), 11-19. https://dx.doi.org/10.19085/sijmas100201.

Manzoni, M., et al. (2022). AI Watch. Road to the adoption of Artificial Intelligence by the public sector.

Medaglia, R., et al. (2024). Competences and governance practices for artificial intelligence in the public sector, Luxembourg: Publications Office of the European Union. European Commission: Joint Research Centre, https://data.europa.eu/doi/10.2760/7895569, JRC138702.

Misuraca, G. and Van Noordt, C. (2020). AI Watch - Artificial Intelligence in public services, EUR 30255 EN. Luxembourg: Publications Office of the European Union. doi:10.2760/039619, JRC120399. https://publications.jrc.ec.europa.eu/repository/handle/JRC126665.

Molinari, F., et al. (2021). AI Watch. Beyond pilots: sustainable implementation of AI in public services. EUR 30868 EN, Luxembourg: Publications Office of the European Union. doi:10.2760/440212, JRC126665.

OECD (2021), Tools for trustworthy AI: A framework to compare implementation tools for trustworthy AI systems. OECD Digital Economy Papers, 312.

OECD (2024) Recommendation of the Council on Artificial Intelligence. https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449 (accessed on 18/10/2024).

Pechtor, V., Basl, J. (2022). Analysis of suitable frameworks for artificial intelligence adoption in the public sector. IDIMT-2022.

Tangi L., et al., (2022), AI Watch. European landscape on the Use of Artificial Intelligence by the Public Sector, EUR 31088 EN, Luxembourg: Publications Office of the European Union. doi:10.2760/39336, JRC129301.

UN (2024). Resolution on the promotion of safe, secure and trustworthy artificial intelligence systems for sustainable development. A/78/L.49.

Veenstra, A.F. et al. (2021). AI: in search of the human dimension. https://publications.tno.nl/publication/34638227/KTvx9Y/veenstra-2021-ai.pdf.

Yeung, K. (2019). Responsibility and AI: A Study of the Implications of Advanced Digital Technologies (including AI Systems) for the Concept of Responsibility Within a Human Rights Framework. https://rm.coe.int/a-study-of-the-implications-of-advanced-digital-technologies-including/168096bdab.

Zuiderwijk, A., et al. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3).

Pubblicato

2025-04-30

Come citare

Niglia, F. (2025). Un modello per una governance responsabile dell’IA antropocentrica nel settore pubblico. Quaderni Di comunità. Persone, Educazione E Welfare Nella Società 5.0, 1(1), 277–309. https://doi.org/10.61007/QdC.2025.1.288