Approccio plurale all’intelligenza artificiale: sfide etiche e formative nelle istituzioni scolastiche

Autori

  • Sara Pellegrini Link campus university-Roma
  • Riccardo Sebastiani Link Campus University
  • Patrizia Ninassi Dipartimento di Scienze Umane, Università degli Studi “Link”, MIM
  • Emanuela Lampis Dirigente Scolastico MIM

DOI:

https://doi.org/10.61007/QdC.2025.1.308

Parole chiave:

umanocentrico, BIAS, governance, sostenibilità, etica

Abstract

La ricerca esplora le percezioni di docenti e personale amministrativo di un istituto comprensivo in Sardegna, evidenziando disparità nelle competenze digitali e l’urgenza di formazione mirata. Si evidenzia il potenziale dell’IA nel personalizzare l’apprendimento e ottimizzare i processi amministrativi, con attenzione ai rischi di privacy, bias e dipendenza tecnologica. Lo studio propone un approccio etico e integrato per favorire inclusività e sostenibilità nei contesti educativi.

Riferimenti bibliografici

Bawden, D., & Robinson, L. (2023). Sustainable Information: Ethics, Technology, and Transformation. Oxford University Press.

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610-623. https://doi.org/10.1145/3442188.3445922.

Bennett, S., & Oliver, M. (2021). Exploring the Role of Technology in Educational Change: New Theories, New Evidence. Journal of Educational Technology Research and Development, 69(4), 1120– 1135. https://doi.org/10.1007/s11423-021-10083-9.

Binns, R. (2021). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 1-12. https://doi.org/10.1145/3442188.3445939.

Cosentino, G. (2020). Social media and the post-truth world order. London; Cham: Palgrave Pivot.

Crawford, K., & Paglen, T. (2019). Excavating AI: The Politics of Images in Machine Learning Training Sets. Excavating AI. Retrieved from https://excavating.ai/.

de Kerckhove, D. (2021). The personal digital twin, ethical considerations. Philosophical Transactions of the Royal Society A, 379(2207), 20200367.https://doi.org/10.1098/rsta.2020.0367.

Floridi, L. (2020). The Logic of Information: A Theory of Philosophy as Conceptual Design. Oxford: Oxford University Press.

Floridi, L. (2021). The ethics of artificial intelligence. Oxford: Oxford University Press.

Henz, P. (2022). The societal impact of the Metaverse. Discover Artificial Intelligence, 2(1), 19.

Jones, K. (2021). Artificial Intelligence in Education: Promise, Implications, and Caution. AI & Society, 36(2), 143-154. https://doi.org/10.1007/s00146-020-01003-0.

Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional Complexity and the Science to Constrain It. Science, 342(6161), 935-937. https://doi.org/10.1126/science.1238056.

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017–1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x.

Mishra, P., & Koehler, M. J. (2021). Technological Pedagogical Content Knowledge (TPACK): A Framework for Integrating Technology in Education. Educational Technology, 61(4).

Mortari, L. (2023). La cultura della cura: Sguardo, ascolto e responsabilità. Bentivoglio: ASMepa.

Noble, S. U. (2021). Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447-453. https://doi.org/10.1126/science.aax2342.

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown Publishing Group.

Parasuraman, R., & Manzey, D. H. (2010). Complacency and Bias in Human Use of Automation: An Attentional Integration. Human Factors: The Journal of the Human Factors and Ergonomics Society, 52(3), 381-410. https://doi.org/10.1177/0018720810376055.

Redecker, C. (2017). European Framework for the Digital Competence of Educators: DigCompEdu. Publications Office of the European Union.

Scherer, R., Howard, S. K., Tondeur, J., & Siddiq, F. (2021). Profiling teachers’ readiness for online teaching and learning in higher education: Who’s ready and who’s not? Computers in Human Behavior, 118, 106675.

Schwab, K., & Davis, N. (2021). Shaping the Future of the Fourth Industrial Revolution. New York: Crown Currency.

Selwyn, N. (2021). Education and Technology: Key Issues and Debates. London; New York; Dublin: Bloomsbury Publishing.

Turner, B. (2019). Politicising the epokhé: Bernard Stiegler and the politics of epochal suspension. In I. Apostolescu (Ed.), The subject(s) of phenomenology: Rereading Husserl, Dordrecht: Springer. 341–354.

Williamson, B., & Eynon, R. (2021). The Automation of Education: Critical Perspectives on AI, Algorithms, and Big Data.

Pubblicato

2025-04-30

Come citare

Pellegrini, S., Sebastiani, R., Ninassi, P., & Lampis, E. (2025). Approccio plurale all’intelligenza artificiale: sfide etiche e formative nelle istituzioni scolastiche. Quaderni Di comunità. Persone, Educazione E Welfare Nella Società 5.0, 1(1), 59–87. https://doi.org/10.61007/QdC.2025.1.308