Reactivating reflexivity: towards an ethical-critical model of digital education
DOI:
https://doi.org/10.61007/QdC.2025.1.286Keywords:
AI, Critical digital literacy, reflexivity, critical theory, utopiaAbstract
The article proposes a model of critical digital education (CDL) to address the power dynamics of digital capitalism, highlighting the limitations of current digital literacy (DL). DL, traditionally geared towards the acquisition of technical skills for work, is criticised for its abstract and ideological approach, which ignores the socio-economic context. CDL, on the other hand, integrates critical analysis of the relationship between technologies and power, overcoming the adaptive logic of DL. This approach is grounded in Paulo Freire’s critical pedagogy, which distinguishes between ‘depository’ and ‘problematising’ education. While the former conveys notions without context, the latter stimulates critical understanding, contextualising phenomena and unmasking their ideological foundations. Applied to the digital, CDL uses this perspective to deconstruct ideological narratives, such as the myth of algorithmic objectivity, and form conscious and active citizens. The article argues that CDL can act as a catalyst for a critical theory of digital capitalism, reactivating the reflexivity of subjects and fostering the construction of emancipatory utopias. In an era dominated by the myth of algorithmic objectivity and the compression of reflexive space, critical education becomes essential for rethinking the relationships between technology, society, and power.
References
Adorno, T. W. (2007). Terminologia Filosofica. Torino: Einaudi.
Angius, N. (2023). The philosophy of computer science, Stanford Encyclopedia of Philosophy, 19/01/2023: https://plato.stanford.edu/ENTRIES/computer-science/#Bib.
Barry, L. (2019), The rationality of the digital governmentality. Journal for cultural research, 1, 365-380.
Beer, D. (2019). The Data Gaze. London: SAGE.
Ben-David, S. et al. (2019). Learnability Can Be Undecidable, Nature Machine Intelligence, 1, 44-48.
Berns, T., Rouvroy, A. (2013). Algorithmic governmentality and prospects of emancipation. Résaux, 1, 163-196.
Bevilacqua, S. & Casarin, P. (2024). Premessa. In P. Freire, Educazione come pratica di libertà. Milano; Udine: Mimesis.
Bourdieu, P. (1990). The logic of practice. Stanford: Stanford University Press.
Cacciari, M. (2020). Il lavoro dello Spirito. Milano: Adelphi.
Carmi, E. et al. (2020). Data citizenship: Rethinking data literacy in the age of disinformation, misinformation, and malinformation. Internet Policy Review, 9(2), 1-22.
Carrington, V. (2018). The changing landscape of literacies: Big data and algorithms. Digital Culture and Education, 10(1), 67-76.
Celikates, R. (2018). Critique as social practice. London: Rowman & Littlefield.
Cheney-Lippold, J. (2017). We are data. New York: New York University Press.
Cohn, J. (2019). The burden of choice. New Brunswick: Rutgers University Press.
Csikszentmihalyi, M. (2008). Flow: The Psychology of Optimal Experience. New York: Harper & Row.
Darmody, A., Zwick, D. (2020). Manipulate to empower: Hyper- relevance and the contradictions of marketing in the age of surveillance capitalism. Big Data & Society, 1, 1-12.
Delanty, G., Harris, N. (2021). Critical theory and the question of technology: The Frankfurt School revisited. Thesis Eleven, 1, 88- 108.
Dewey, J. (2014). Esperienza ed educazione. Milano: Cortina. Finn, E. (2017). What algorithms Want. Cambridge: MIT Press.
Fisher, E. (2022). Algorithms and Subjectivity. New York: Routledge.
Fraser, N. (1990). Rethinking the Public Sphere: A Contribution to the Critique of Actually Existing Democracy. Social Text, 25/26, 56-80.
Freire, P. (2019). Pedagogia degli oppressi. Torino: Edizioni Gruppo Abele.
Freire, P. (2024). Educazione come pratica di libertà. Torino: Einaudi.
Fuchs, C. (2021). Marxist Humanism and Communication Theory. New York: Routledge.
Fumagalli, A. (2007). Bioeconomia e capitalismo cognitivo. Verona: Ombre Corte.
Gillespie, T. (2016). Algorithm. In Peters, E. (ed), Digital Keywords. Princeton: Princeton University Press. 18-30.
Habermas, J. (1990). Conoscenza e Interesse. Roma/Bari: Laterza. Hegel, G.W.F. (2006). Scienza della Logica, Roma/Bari: Laterza.
Hristova, S. (2023). Habits and habitus in digital culture. In Lindgren, S. (ed.). Handbook of critical studies on artificial intelligence. Cheltenham: Elgar. 108-117.
Illis, K., Petit, M., Jarret, K. (2013). Google and the culture of search. New York: Routledge.
Jaeggi, R. (2021), Critica delle forme di vita. Milano/Udine: Mimesis.
Kandlhofer, M. et al. Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE). https://ieeexplore.ieee.org/abstract/document/7757570.
Karakayali, et al. (2018). Recommendation Systems as Technologies of the Self. Theory, Culture & Society, 2, 3-24.
Kohan, W. (2023). Paulo Freire, più di sempre. Una biografia filosofica. Milano/Udine: Mimesis.
Langley, P., & Leyshon, A. (2016). Platform Capitalism: The Intermediation and Capitalization of Digital Economic Circulation. Finance and Society, 1, 11-31.
Lindgren, S. (2023). Critical theory of AI. New York: Wiley.
Lupton, D. (2016). The Quantified Self: A Sociology of Self-Tracking. Cambridge: Polity Press.
Marcuse, H. (2020). Ragione e Rivoluzione. Hegel e il sorgere della teoria sociale. Bologna: Il Mulino.
Mordacci, R. (2023). Critica e Utopia. Roma: Castelvecchi.
Ng, D.T.K., et al. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2. 1-11. https://doi.org/10.1016/j.caeai.2021.100041.
Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York: NYU Press.
Numerico, T. (2021). Big Data e Algoritmi. Prospettive Critiche. Roma: Carocci.
Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money and Information. Cambridge: Harvard University Press.
Pfeiffer, S. (2022). Digital Capitalism and Distributive Forces. Bielefeld: Transcript Verlag.
Pierazzuoli, G. (2022). Il soggetto collaborativo. Per una critica del capitalismo digitale. Verona: OmbreCorte.
Possati, L.M. (2021). The Algorithmic Unconscious. New York: Routledge.
Romele, A. (2023). Digital Habitus. New York: Routledge.
Rouvroy, A. (2016). Algorithmic governmentality: Radicalisation and immune strategy of capitalism and neoliberalism? La deleuziana, 3(1), 30-36.
Scaltsas, T. (2017), “Valuative Intelligence”. Medienimpulse, 4, 1- 11.
Špiranec, S. et al. (2019). “Searching for critical dimensions in data literacy”, in Proceedings of the Tenth International Conference on Conceptions of Library and Information Science, Ljubljana, Slovenia, June 16-19, 2019. https://informationr.net/ir/24-4/colis/colis1922.html.
Srnicek, N. (2016). Platform Capitalism. Cambridge: Polity Press.
Stiegler, B. (2017). Automatic Society: The Future of Work. Cambridge: Polity Press.
Touretzky, D., et al. (2019). Envisioning AI for K-12: What should every child know about AI?. Proceedings of the AAAI conference on artificial intelligence, 1. 9795-9799.
Van Dijck, J. (2014). Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2). 197-208.
Wajcman, J. (2014). Pressed for Time: The Acceleration of Life in Digital Capitalism. Chicago: University of Chicago Press.
Yeung, K. (2017). ‘Hypernudge’: Big Data as a Mode of Regulation by Design. Information, Communication & Society, 20(1). 118-136.
Zellini, P. (2010). Numero e Logos. Milano: Adelphi.
Zuboff, S. (2019). The Age of Surveillance Capitalism. New York: PublicAffairs.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Community Notebook. People, Education and Welfare in the Society 5.0

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.